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A study of the structure of stationary, fully and partly dispersed, normal shock 
waves in steady vapour-droplet, two-phase flow is presented. Pure substances only 
are considered, but, unlike most previous work, the droplet population is allowed to 
be polydispersed. It is shown how the effects of thermal relaxation for such a mixture 
can be elegantly incorporated into the analysis. 

Three types of fully dispersed wave are identified. Type I waves are dominated by 
thermal relaxation and an approximate analytical solution is presented which gives 
results in close agreement with accurate numerical solutions of the governing 
equations. The analysis predicts some unexpected behaviour of the thermodynamic 
variables and demonstrates the correct scaling parameters for such flows. An 
approximate analysis is also presented for Type I1 waves, dominated by both 
velocity and thermal relaxation. Type 111 waves, where all three relaxation processes 
are important, are of little practical significance and are only briefly discussed. Partly 
dispersed waves are also considered and the results of a numerical simulation of the 
relaxation zone are presented. A linearized solution of this problem is possible but, 
unlike other relaxing gas flows, does not give good agreement with the more exact 
numerical calculations. 

The apparent discontinuity in the speed of sound in a vapour-droplet mixture as 
the wetness fraction tends to zero has been responsible for some confusion in the 
literature. This problem is reconsidered and it is shown that the transition from the 
two-phase equilibrium to the single-phase frozen shock wave speed is continuous. 

1. Introduction 
The thermo-fluid dynamics of the two-phase flow of a vapour-liquid mixture 

consisting of a large number of minute liquid droplets uniformly dispersed 
throughout a background vapaur phase continuum is both scientifically interesting 
and of engineering importance. (Applications include condensing flows of moist air or 
combustion products, aerosol formation in mixing processes and wetness problems in 
steam turbines). Two-phase flows of this type respond well to mathematical 
modelling because the small size of the droplets (typically of radii less than 1 pm) and 
the magnitude of the surface tension forces ensure that droplet sphericity is 
maintained in most situations. 

Most engineering applications of condensing flows involve complex geometrical 
boundaries (e.g. flow in turbine cascades) and it is not surprising that numerical 
methods of solution have, in the past, been stressed in preference to the analytical 
approach (Moheban & Young 1985; Bakhtar & Tochai 1980). Theoretical work has 
also focused more on the nucleation and initial growth of the droplet cloud rather 
than the equally important problem of the flow characteristics once the droplet 
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population is fully established. Thus, although numerical solutions of quite 
complicated two-dimensional nucleating flows can now be obtained, there are still 
fundamental areas where basic physical clarification is required. One such area is the 
structure of shock waves in non-nucleating vapour-droplet flows. 

The interaction of the droplet cloud with the vapour continuum gives rise to a 
dispersive medium and the shock wave structure displays many of the characteristics 
to  be found in other types of relaxing gas flows, such as those involving chemical 
dissociation or vibrational non-equilibrium. The vapour-droplet flow problem is 
more complicated, however, because three different relaxation processes can be 
identified (associated with thermal equilibrium of the droplets, interphase velocity 
slip and thermal equilibrium of the whole medium) and it is not immediately obvious 
exactly what role each particular process plays in the overall shock wave structure. 
Another difficulty is that  the droplet cloud may not be monodispersed (i.e. droplets 
all of the same radius) but may exhibit an arbitrary level of polydispersity with a 
spectrum of droplet radii difficult to  quantify. 

In  this paper we discuss the structure of stationary compressive normal shock 
waves in steady flows of vapour-droplet mixtures. For clarity, the analysis is 
restricted to  pure substances (so that phase change is heat transfer rather than 
diffusion controlled), but the extension to include an inert carrier gas is also possible. 

Although the propagation of small-amplitude harmonic waves in vapour-droplet 
mixtures has been studied extensively (Cole & Dobbins 1970 ; Petr 1973 ; Gumerov, 
Ivandaev & Nigmatulin 1988), the subject of shock waves in similar mixtures has not 
been addressed to any great extent. The general behaviour of condensing flows was 
examined by Marble (1969) who discussed the structure of partly dispersed shock 
waves (which consist of a near discontinuity dominated by viscosity and heat 
conduction, followed by a long relaxation zone), but did not mention the interesting 
possibility of fully dispersed waves which are stable in steady flow a t  velocities below 
the frozen speed of sound. Partly dispersed shock waves were also discussed by 
Konorski (1971) and Bakhtar & Yousif (1974), although these authors did not 
include any attempt a t  generalization. Petr (1979), by applying the formalism of 
relaxation gas dynamics, obtained a solution for a fully dispersed wave governed by 
just one relaxation process, but few details of his analysis are presented. 

Shock waves in vapour4roplet flows have been studied experimentally in a 
number of different situations (although no measurements are available to provide 
a detailed picture of the structure of the waves). As examples, we cite the work of 
Barschdorff (1970) on periodically oscillating condensation zones in transonic nozzles 
and of Schnerr (1989) on the structure of two-dimensional moist air flows in channels 
and over aircraft wing sections. A recent article by Skillings (1989) shows some 
interesting unsteady shock wave behaviour in a transonic wet-steam turbine 
cascade. Measurements of shock propagation in moist air in a shock tube have also 
been performed by Goossens et al. (1989). Experiments such as these have led us to 
undertake the theoretical study reported below. 

The present work examines the structure of fully and partly dispersed normal 
shock waves and clarifies the roles played by the various relaxation processes. Some 
progress is also made in including the effects of droplet polydispersity. In order to  
elucidate the underlying physics, a simplified analytical approach is used wherever 
possible. The results of numerical calculations are also presented so that the reader 
may readily appreciate the errors incurred by the approximations of the analytical 
methods. I n  many cases, surprisingly accurate estimates of, for example, shock wave 
velocity profiles can be obtained from quite simple calculations. 
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2. Conservation equations 
We consider the one-dimensional steady flow of a wet vapour in a duct of constant 

cross-sectional area. The vapour is the continuous phase and has pressure p ,  
temperature T,, density p,, specific enthalpy h, and velocity V, all of which are 
functions only of x, the distance in the flow direction measured from an arbitrary 
datum. The droplet population may be polydispersed and the continuous spectrum 
of droplet sizes is discretized into an arbitrary number of droplet groups. Group i 
consists of n, droplets per unit mass of mixture, all of radius Ti, liquid density pf and 
mass m, = $rr:pf. The contribution yi of droplet group i to the total wetness fraction 
y is given by yi = nim, and 

Y = CYi = xn,mi ,  
where the summation sign signifies summation over all droplet groups. All droplets 
in a particular group are assumed to have the same velocity V, and temperature q, 
the latter being assumed uniform throughout a droplet. 

The analysis is valid for low wetness fractions such that the volume occupied by 
the liquid phase is negligible. Also neglected is the partial pressure of the droplet 
cloud. In calculating hi, the specific enthalpy of a droplet in group i, the contribution 
from the surface energy is not included. It is also assumed that the change in vapour 
pressure due to droplet surface curvature is small. 

The droplet cloud is assumed to be uniformly distributed throughout the vapour 
and of sufficient number density that the interaction with the vapour can be 
described by a continuous variation. We therefore adopt what is commonly called 
the 'two-fluid' model and view the droplets as providing sources or sinks of mass, 
momentum and energy for the vapour, each source term varying continuously in the 
z-direction. Coagulation of droplets is neglected and individual droplet radii change 
solely by pure evaporation or condensation. In passing through a shock wave, each 
droplet is assumed to retain its individual identity. Indeed, for the types of flow 
considered here, the Weber-number criterion for stability against fragmentation is 
well satisfied even for very strong shock wave deceleration. 

For clarity, the analysis is presented for the flow of a pure substance only (i.e. the 
vapour phase and the liquid droplets are of the same chemically pure species), but 
the extension to include an inert carrier gas is also possible. 

The assumptions detailed in the previous paragraphs may appear restrictive at  
first glance but in practice this is not the case and the analysis applies to most wet 
vapour flows formed initially by homogeneous nucleation and having wetness 
fractions less than about 0.2. As an example, consider the case of a monodispersed 
population of water droplets in steam at a pressure of 0.5 bar and a corresponding 
saturation temperature T, of 81.3 "C. Depending on the rate of expansion during the 
nucleation process, the final, established, droplet radius would be expected to lie in 
the range 0.05-2.0 pm. For a wetness fraction of 0.2, this corresponds to a number 
concentration varying from 1.5 x 10" The average distance 
between droplets is about 23 droplet diameters and the volume fraction occupied by 
the liquid phase is only 8 x lop5. In passing through a strong shock wave generating 
an interphase slip velocity AV of 200m/s, say, the range of Weber number 
(2rp, A P / r ,  where r is the liquid surface tension) corresponding to the given range 
of droplet radii is 0.02-0.7, which is well within the stability limit. 

The neglect of the surface energy terms implies that the droplets are well 
established after the nucleation process, but again this is not a serious restriction. 

to 2.4 x lo6 
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The Kelvin-Helmholtz equation giving the vapour subcooling (AT = T,- T,) for 
equilibrium of a droplet of radius r is 

2aT, A T = -  
Pf hf, r ' 

where p, is the liquid density and h,, is the specific enthalpy of evaporation. For 
the condition specified above, we find that, for r = 0.05 pm, A T  = 0.43 "C and for 
r = 2.0 pm, A T  = 0.01 "C. 

Adopting the assumptions discussed above, i t  is straightforward to derive the 
basic conservation equations for the flow. Firstly, the conservation of droplets is 
represented by 

there being one equation for each droplet group. 

(assuming the flow to be inviscid and thermally non-conducting) are 
The mass continuity, momentum and energy equations for the two-phase mixture 

d 
1--Y 

dx 1--Y I 

(4) 

(5)  

We assume that the vapour phase behaves as a perfect gas with constant isobaric 
specific heat capacity c,. Thus, 

dT dh 
dx dx 
A- - - c  -, 

where R is the specific gas constant of the vapour. The perfect gas approximation is 
not crucial to the analysis. More realistic equations of state can be introduced if 
desired but these tend to complicate the algebraic development and do not provide 
any further physical insight. 

In  later sections, we shall specify the thermal equilibrium state by the saturation 
temperature rather than the pressure. The two are related by the Clausius-Clapeyron 
equation. Neglecting the specific volume of the liquid and introducing the perfect gas 
equation for the vapour phase, we have 

1 dp - h,, 1 dT, 
p d x  RT,T, d x '  
_ _  - --- (9) 

3. Relaxation processes 
The set of equations in the previous section is incomplete and must be 

supplemented by three equations for each droplet group, representing the interphase 
transport of mass, momentum and energy. If the velocity slip between droplets and 
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vapour is small, the mass and energy transfer equations can be decoupled from the 
momentum transfer equation which, for an i-group droplet, can then be written 

where Di is the drag force exerted by the vapour on an i-group droplet. 

(Young 1982) 
The mass and energy transfer equations are strongly coupled and take the form 

dm, - v.- - -Mi, 
a dx 

where M i  is the mass transfer rate and Q, is the heat transfer rate from an i-group 
droplet. The term (&-hi) can normally be replaced by the specific enthalpy of 
evaporation h,, with negligible error. 

Definitive expressions do not exist for D,, M ,  and Q,. Problems arise because the 
flow in the vicinity of very small droplets does not satisfy continuum requirements. 
The droplet Knudsen number (Kn, = 6/2r,, where 6 is the mean free path of a vapour 
molecule) can span the range from the continuum (Kn, -4 1 )  to the free-molecule 
regime (Kn, 9 1 )  and it is necessary to postulate equations valid over the whole of 
this range. This paper is not concerned with the finer points of droplet growth theory 
and we shall employ equations which are reasonably well established and of the 
shape most commonly used by workers in the field. 

For the small droplets considered here, the only contribution to D, of any 
significance is the steady-state drag force. Following Gyarmathy (1964), we take 

where ,u is the dynamic viscosity of the vapour and $(Re,) is an empirical correction 
based on slip Reynolds number (Re, = 2p,r,lV,- V J / p )  given by 

(14) 
I n  calculating the vapour molecular mean free path for evaluating Kn,, we use the 
simple kinetic theory expression 

$(Re,) = [ 1 + 0. 15Ref.687]-1. 

6 = P - (&cRT,)+. 
P 

For small slip Reynolds numbers and continuum flow (Re, + 1, Kn, + 1) equation 
(13) reduces to the Stokes drag formula for a sphere. For free-molecule flow 
(Kn, % 1)  an expression derivable from kinetic theory is obtained. The denominator 
of (13) provides a simple interpolation formula (Cunningham 1910) for intermediate 
Knudsen numbers. 

A similar approach is used to  specify the heat transfer rate Q,. Again, following 
Gyarmathy (1976), we take, 

4nr, A 
(Ti - T,), 

Qi = 1 + 4.5Kni/Pr 

where h is the thermal conductivity and Pr = cp ,u/A is the Prandtl number of the 
vapour. The factor 4.5 appears rather than the more usual 3.8 because of our 
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definition of the mean free path. For small Kni, equation (16) reduces to the 
continuum expression for steady-state conduction heat transfer from a sphere. For 
large Kn, the kinetic theory (free molecule) result is regained. 

When a droplet is condensing or evaporating, the radial mass motion of the vapour 
may affect the form of D, and Qi. This is a difficult problem to address but, in all cases 
considered here, the vapour velocity induced by the phase change is very small and 
neglect of the effect appears justifiable. 

The mass transfer rate Mi is more difficult to specify and has been the subject of 
extensive debate in recent years (Labuntsov & Kryukov 1979). .For many droplet 
growth calculations, however, the form is not critical and following Young (1982) we 
use 

(18) 
T - T ,  - 1 where - 
Ti - Tg 1 + 4.5Kni/Pr ' 

and p,(T,) is the saturation pressure at the droplet temperature T,. In  keeping with 
earlier assumptions, changes of vapour pressure with droplet surface curvature have 
been neglected. 

Equations (17) and (18) are obtained from a simple kinetic theory model which 
assumes free-molecule behaviour in a region close to  the droplet surface and 
continuum behaviour in an outer region far from the droplet. T' represents the 
temperature a t  the interface of the two regions which is assumed to  occur a t  a 
distance of about one mean free path from the droplet surface. Expression (18) is a 
slightly simplified form of that presented in Young (1982), chosen to be compatible 
with equation (16). 

The condensation coefficient q in (17) is a parameter lying between 0 and 1 
representing the fraction of molecules incident on the droplet which condenses (as 
opposed to being reflected). The magnitude of q has been discussed for over half a 
century and the argument is still not resolved (Mozurkewich 1986). In  keeping with 
modern thought we shall adopt a value of q = 1 for numerical computation. 

The expressions for D,, Qi and Mi are too cumbersome to utilize in any analytical 
procedure and it is advantageous to introduce three relaxation times for each droplet 
group, characterizing the response of the two-phase system to departures from 
equilibrium. To a certain extent, the definitions of the relaxation t,imes are arbitrary, 
but it is profitable to  exploit the physics of the problem and choose relaxation 
processes which are almost independent. 

Relaxation associated with velocity slip is the most straightforward, although not 
the most important, process. We define the slip velocity A& = ( Vg - V,) as the non- 
equilibrium variable, and (10) combined with (13) can then be written 

the local i-group velocity (or inertial) relaxation time T ~ ,  is defined by 

Each droplet group is associated with a particular relaxation time which varies from 
point to point in the flow field. This variation can easily be accommodated in a 
numerical integration procedure but, in the analytical development, we shall adopt 
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suitable average values and assume the relaxation times to remain constant. No 
physical principles are obscured by this approximation and the accuracy of the 
assumption (which is normally very good, especially for fully dispersed waves) can 
be judged by comparison with the numerical results. 

The reversion to thermal equilibrium following a disturbance usually takes place 
in two, almost independent, stages. Suppose the medium to be perturbed from 
equilibrium so that neither the vapour temperature Tg nor the droplet temperatures 
T, equal the saturation temperature T,. In the first (normally extremely rapid) stage 
of relaxation, the droplet temperatures approach exponentially steady-state values 
T,, which are usually very close to the saturation temperature. In this first 
relaxation period, the change in droplet temperature is caused by the condensation 
(or evaporation) of a comparatively small mass which supplies (or removes) the 
required energy. If the droplets are small, their radii hardly change and negligible 
heat is transferred between the phases. In the second (much longer) stage of 
relaxation, the vapour temperature rises (or falls) to the saturation value due to the 
interphase heat transfer as the droplets grow (or evaporate). 

We investigate below the conditions under which the thermal relaxation process 
naturally divides into two periods of quite different timescale. However, whether or 
not these conditions are fulfilled, it is shown in Appendix A that (12 )  can always be 
written in the form 

where Ti, is the steady-state droplet temperature defined by equation (A2) in 

cf  being the specific heat capacity of the liquid and the parameter A being defined by 
equation (A 3 )  in Appendix A. In the Appendix, it is shown that A < 1 for all 
common substances unless the condensation coefficient q is also very small. 

The form of ( 2 1 )  shows clearly that rDI can be interpreted physically as the droplet 
temperature relaxation time for group-i droplets. The conjugate non-equilibrium 
variable is defined as AT, = (qm - T,) although, in most practical cases T,, x T, and 
AT, % (T,-T,). After a small disturbance from equilibrium, the steady-state droplet 
temperature Ti, is approached exponentially with time constant rDI. In passing, we 
note that, in his analysis, Marble (1969) identified correctly the physical processes 
resulting in droplet temperature relaxation but his expression for the relaxation time 
itself was in error. This was because he did not define the relaxation time via an 
archetypal equation like ( 2 1 ) .  The expression given by Jackson & Davidson (1983) 
is also incorrect for the same reason. 

Using ( 2 1 )  and the definition (22 )  for rDt, ( 1 1 )  and (12 )  can be combined to give an 
expression for the growth rate of group-i droplets, which is conveniently expressed 
in the form 

dm ( l - y ) c p ( T , - T )  Y ~ c ~ A T ,  
dx V ,  7Ti 6 ‘DI 

( h g - h i ) ? z i L  = +-, 
where rTI is defined by 

TTi = 

(23 )  

(24) 

Although rTi has the units of time, i t  does not, by itself represent the thermal 
relaxation time of the whole medium unless the droplet population is mono- 
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dispersed. The vapour temperature responds simultaneously to heat transfer from all 
size classes of droplets and all droplets are instrumental in raising or lowering the 
temperature to the saturation value. This is quite unlike velocity and droplet 
temperature relaxation where it is possible for some droplets to be in equilibrium 
with the vapour while others are still relaxing. 

To identify the vapour thermal relaxation time, it is necessary to consider the 
integrated effect of the droplet cloud as a whole. The analysis is outlined in Appendix 
A where it is shown that the vapour thermal relaxation time rT is given by 

-=x-, 1 1 
7T ‘Ti 

the summation extending over all droplet groups. In  passing, we note that the 
vapour thermal relaxation time defined by Marble (1969) does not have the correct 
physical significance because he failed to include the integrated effect of all the 
droplets and did not manipulate the equations into the archetypal relaxation form 
when making his definition. 

The equations of Appendix A and the definition ( 2 5 )  of rT show how the effects of 
a polydispersion may be introduced without direct specification of the form of the 
droplet size distribution. Thus, assuming the droplet cloud to be well established, 
different distributions with the same value of rT affect the gross flow behaviour in 
identical ways. Unfortunately, however, this elegant simplification is restricted in 
application to the vapour thermal relaxation process and cannot be extended to  the 
droplet temperature and velocity relaxation processes. Hence, for a droplet spectrum 
discretized into N droplet groups, we are still faced with a multi-phase flow exhibiting 
2N+ 1 different relaxation times. Luckily, this apparently intractable problem can be 
naturally simplified in other ways. 

One obvious approach is suggested by the fact that, for the small droplets 
considered here, the three relaxation times are of quite different magnitudes. Droplet 
temperature relaxation is much faster than velocity relaxation, which is itself about 
one order of magnitude faster than vapour thermal relaxation. Indeed, considering 
for the moment a monodispersed droplet population, we find from the ratio of (20) 
and (24 )  for Pr = 1 and Re --f 0, 

a ratio which is always less than 0.17 by the terms of the analysis (y < 0.2). The ratio 
of (22)  and (24) gives 

5=---- 1 2 - q  y cf RT, KnlPr 
rT l - A  2q l - y R ( X )  1+4.5Kn/Pr 

This shows that, for most common substances, the droplet temperature relaxation 
time T~ is several orders of magnitude less than the vapour thermal relaxation time 
rT, the exception to this general rule being in the unlikely event that q 4 1.  

In  the analysis that follows, we exploit the disparity in relaxation times and 
henceforth assume 

TD 6 71  6 TT. (28) 
As a practical illustration, figure 1 shows curves of rD, rI and rT as functions of 
droplet radius, plotted for a monodispersed population of water droplets in steam at 
0.5 bar pressure and wetness fraction 0.1. In this particular case it is evident that the 
inequalities (28) are well satisfied. 
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FIGURE 1. Droplet temperature, velocity slip and vapour thermal relaxation times for 

monodispersed water droplets in pure steam ; p = 0.5 bar, y = 0.1. 

To summarize the results of this section, the conservation equations (3)-(6) are 
supplemented by three interphase transfer equations (19) ,  (21)  and (23) for each 
droplet group. For future reference these are now collected together and written in 
a slightly more convenient form as 

where A 4  = (Vg-  K), AT, = (Ts-T,) ,  AT = (Ts- Tg) and 7*(,  7D3( and 7T, are given by 
(20), (22) and (24) respectively. (For ease of interpretation in later sections, slight 
simplifications have been made to (21) and (23) .  It is shown in Appendix A that the 
steady-state droplet temperature T,, varies only slightly from the saturation 
temperature T,. In (30)  and (31) we have therefore made the assumption T,, = T, and 
in (31)  7D31 < 7Ti.)  

4. Working forms of the basic equations 

the three conservation equations : 
Straightforward algebraic manipulation of (3)-(8) leads to the following forms of 

9 FLM 228 
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The convenient shorthand D = d/dx has been introduced and it will be noted that 
the variable pg has been eliminated to leave the three dependent variables p, Tg, V, 
characterizing the vapour state. 

The results of the analysis will show that the quantities (AT/Tg), (AVi/Vg) and 
(Aq/Ts) are all much less than unity. When (31) is substituted into (33) and (34), the 
final term in each of these equations contains the products (AF':/Vg)(AT/Tg) and 
(AVJVg) (AT,/T,) which are of second order in small quantities. Although it is possible 
to retain these terms in the analysis, we gain neither accuracy nor insight by their 
inclusion and they are henceforth neglected. The basic working equations therefore 
become 

5. Speeds of sound 
We now introduce four reference velocities corresponding to the speed of sound in 

two-phase flow under different thermal and mechanical constraints. The full frozen 
and full equilibrium sound speeds are well known (Petr 1973). The former (denoted 
here by a,) corresponds to the speed of an harmonic acoustic wave of such high 
frequency that the response of the droplets is negligible (i.e. zero mass, momentum 
and energy transfer). The latter (denoted here by ae3) corresponds to  the speed of an 
harmonic acoustic wave of such low frequency that liquid-vapour equilibrium is 
maintained at  all times. The two intermediate speeds correspond to (a )  the case of 
equilibrium droplet temperature relaxation but frozen momentum and heat transfer 
(ael) and, ( b )  the case of equilibrium droplet temperature and velocity relaxation but 
frozen heat transfer (ae2). 

The derivation of the sound speeds is quite straightforward and parallels the 
simple analysis, to be found in most elementary textbooks, for the speed of sound in 
single-phase flow. Figure 2 shows a stationary plane wave in a one-dimensional duct 
and the conservation equations (35)-(37) are applied across the wave and solved to 
give the vapour flow velocity relative to the wave under the specific constraints of 
interest. As an example, we describe the procedure to  compute the sound speed a,, 
corresponding to equilibrium droplet temperature and velocity, but frozen heat 
transfer. 

Equilibrium velocity slip throughout the wave implies immediate velocity 
relaxation, so that dVJdz = dVg/dx in (35)-(37). (In (29) we allow A &  and 71i to tend 
to zero simultaneously, dVJdx remaining finite.) Similarly, equilibrium droplet 
temperature implies dT,/dz = dT,/dz in (35)-(37) and, in (30): AT and 7Di tend 
simultaneously to zero. Finally, zero heat transfer implies 7Ti + co and (31) with (30) 
becomes 

Dm. 2 -  c, TsDTs 
ma hf, Ts * 
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FIGURE 2. Flow configuration for calculation of the various sound speeds. 

When this procedure is applied in turn for each sound speed, we obtain the 
following four expressions : 

a; = yRT,, (39) 

where c = cp + yep/( 1 - y). The ratio of specific heat capacities for the vapour phase 
is denoted by y .  

For small wetness fractions (y + 0), it should be noted that a,, and ae2 both tend 
to a,, but 

The fact that there appears to be a discontinuity in sound speed on crossing the 
saturation line has been a source of confusion in the literature. We reconsider this 
problem later in the paper. 

The relationship of the four sound speeds to each other is of great importance. As 
a typical example, for steam at 1 bar pressure and wetness fraction 0.1, we find 

ae:ael:ae2:ae3 = 1 :0.997:0.945:0.878. 

6. Qualitative aspects of shock structure 
We now consider the structure of stationary, finite-amplitude waves in one- 

dimensional, steady flow. Far upstream of the wave the flow is assumed to be in 
equilibrium with a specified pressure, wetness fraction and droplet size distribution. 
Far downstream of the wave a new equilibrium condition is re-established. The far 
upstream condition is denoted by subscript 0. 

By applying the conservation equations between the upstream and downstream 
equilibrium states, it follows that the upstream flow velocity V,, must exceed the full 
equilibrium speed of sound ae3, in order for a solution to exist other than the trivial 
case when all flow properties remain constant. It is also found, as with other types 

9-2 
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I 

P 

1 I - 
FIQURE 3. Schematic diagram of the structure of fully and partly dispersed shock waves. 

(a) Fully dispersed wave, ( b )  limiting case of fully dispersed wave (c) partly dispersed wave. 

Distance through shock, x X 

of relaxing gas flow (Vincenti & Kruger 1965), that a continuous transition of fluid 
properties can occur between the upstream and downstream equilibrium states, 
providing the upstream flow velocity is less than the fully frozen speed of sound afo. 
For this range of upstream flow velocities (ae3, < V,, < a,,), the steepening effect of 
the nonlinear terms in the equations of motion is just balanced by the dispersive 
effect of the relaxation processes. Such waves are described as fully dispersed. 

For upstream flow velocities greater than afO, the conservation equations do not 
admit a continuous solution and a very steep-fronted shock wave forms in which the 
flow is dominated by the effects of viscosity and thermal conductivity. This part of 
the wave is normally modelled by a discontinuity in the flow properties and 
downstream of the discontinuity there is a continuous relaxation zone where the flow 
relaxes to its final equilibrium state. Such waves are described as partly dispersed. 

Figure 3 shows a qualitative sketch of the pressure and vapour phase velocity 
distributions through the different types of wave. The temperature distribution is a 
little more complicated and we shall return to this later. 

From a qualitative point of view, we have described nothing other than the well- 
known types of stationary wave to be found in all relaxing gas flows. However, one 
important result of our work shows that fully dispersed waves in vapour-droplet 
flows can be subdivided into three further categories depending on the upstream 
vapour phase velocity. We thus define 

Type I waves corresponding to ae30 < V,, < ae2,, 
Type I1 waves corresponding to aezo < V,, < a,.,, 

Type I11 waves corresponding to ae10 < V,, < af0. 

As we shall demonstrate, Type I waves are dominated by vapour thermal 
relaxation, Type I1 waves by both velocity and vapour thermal relaxation and Type 
111 waves by all three relaxation processes. The remainder of this paper is devoted 
to a quantitative description of the various types of shock wave structure. 

7. Fully dispersed waves of Type I 
7.1. The velocity profile of the wave 

Type I waves have upstream values of velocity which satisfy ae3, < V < aeZ0. For 
such waves, we shall show a posteriori that an excellent approximation is to assume 
that the droplet temperatures and velocities V, instantaneously accommodate to 

g? 
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their equilibrium values a t  all points within the wave. Formally, therefore, we allow 
7Di and 71i to tend to zero, the ratios Aq/7Di  and A & / ~ I (  remaining finite such that 

A% dT, AV, d V  -+V-; - -+V-J.  
7Di ' dx 71i dx 

Substituting these approximations and (31) into the conservation equations 
(35)-(37), we obtain the set of governing equations for a Type I wave 

Starting from (45), we use (9) to eliminate DT,/T, and (46) to eliminate Dp/p .  The 
result is 

(48) 
Starting from (47) and again using (9) and (46), we obtain 

- 0. +- +-- T,RT, 7-1 D(AT)  AT DV 5 -[ vg (1-Y)RTg I[----] Tg h,, Y Tg vg7TTg 

We now form the differences (48) - (49) and (48) - ( cp  T,/hfg) (49) to give 

(49) 

where ae2 and ae3 are defined by (41) and (42) respectively. 
Equations (50) and (51) allow several important conclusions to be drawn 

concerning the flow behaviour in Type I waves: 
(a )  In a compressive wave, the pressure rises (Dp  > 0) ,  the velocity falls 

(DV, c 0 )  and droplet evaporation occurs (Dm, c 0).  Equation (31) then shows that 
AT c 0 and the vapour is superheated throughout the wave. From (50), for DVg < 0 
and A T  c 0, we deduce that V, c ae2. We have thus verified the statement that fully 
dispersed waves of Type I are only possible for Vgo < aezo and therefore the reference 
velocity ae2 takes on the role of a frozen speed of sound for such a wave. 

( b )  From (51) (noting that DVg c 0 throughout) then, for V, > ae3, D ( A T )  c 0 
(superheat increases), and, for V, c ae3, D(AT)  > 0 (superheat decreases). The 
maximum superheat therefore occurs at that position in the wave where V, = ae3. We 
shall denote this velocity by ae3.. 
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x = o  
Distance 

FIGURE 4. Schematic diagram of velocity distribution in a Type I wave to illustrate the 
notation. 

We now define two Mach numbers (both based on the vapour phase velocity) by 
Me, = Vg/a,, and Me, = V,/a,,. Eliminating DVg/Vg between (50) and (51) gives 

From (52) ,  we deduce the following: 
(a)  For Vg < ae3 or Vg > a,,, then AT > 0 implies D(AT) < 0 and AT < 0 implies 

D(AT) > 0. Hence, if the flow is disturbed from its equilibrium state, there is a 
tendency for it to return to that same equilibrium state. The behaviour in these 
regimes is therefore stable. 

( b )  For ae3 < V, < ue2, then AT > 0 implies D(AT) > 0 and AT < 0 implies 
D(AT) < 0. Small departures from thermal equilibrium have a tendency to grow 
and the behaviour is essentially unstable. It is this characteristic which is responsible 
for the existence of fully dispersed shock waves. 

Equations (50) and (51) can now be solved simultaneously to obtain the velocity 
distribution in a Type I wave. To do this, we take as a reference condition the 
velocity ae3. and define a perturbation velocity V; (see figure 4) by 

v, = a,,*+ v;. (53) 

All fully dispersed waves are weak and hence ( J$/ae3*) Q 1.  Substituting in (51) and 
retaining second-order terms (to model the nonlinear behaviour characteristic of all 
shock waves), 

(54) 

In deriving (54), we have neglected the variation of ae3 through the wave and 
therefore dispense with the subscript *. (This minor assumption and others that 
follow are best justified a posteriori or by comparison with numerical solutions.) 

Equation (54) can be approximately integrated subject to the boundary condition 
that far upstream of the wave AT+ 0 and Vg --f Go. ( Vg0 is the prescribed upstream 
velocity perturbation, see figure 4.) Thus, 
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where it is understood that the coefficient of AT is a suitable average value. (In fact 
c p  T,/h,, and RTJA,, both vary only slightly through the wave and will be assumed 
constant in what follows.) 

Equation (55) is a relationship between the non-equilibrium variable AT and the 
flow velocity. Far downstream of the wave, equilibrium is re-established (AT = 0 )  
and Vg = - V,,. This is in keeping with Prandtl's relation (ae3. + V,,) (ae3*- Vgo) = 

providing squares of small quantities are neglected. 
Substituting (55) into (50), we obtain 

We now introduce a dimensionless distance xT, a dimensionless velocity perturbation 
vT and a dimensionless parameter #T defined by 

ae2 x 
xT = (3 a e 3 T T '  

V v T = - - g ,  
GO 

(57) 

where Me,, represents the upstream Mach number based on ae3. It is important to 
note that #T is completely independent of the droplet size distribution and depends 
only on Meso and the ratio ae2/ae3 (which is virtually constant through the wave). 
Values of #T range from 1 to 00. #T + co corresponds to Me3, + 1, the limiting case of 
a very weak wave. #T = 1 corresponds to V,, = ae20 (Me2, = l),  the upper limiting 
case for fully dispersed waves of Type I. 

Using the definitions (57)-(59), equation (56) can be written in dimensionless form 
as 

Equation (60) is a differential equation for the dimensionless velocity distribution 
in the wave and can be integrated to give 

Setting the arbitrary constant to zero locates the origin, xT = 0, a t  vT = 0, i.e. at  
V = ae3*. 

Given the complexity of the two-phase flow, (61), which shows that the 
dimensionless velocity profile of a Type I wave depends on only one parameter @T 

which is independent of droplet size, is indeed a remarkable result. In fact the droplet 
size distribution only enters the equation in the scaling of the wave in the x-direction, 
xT being linear in the reciprocal of thermal relaxation time. 

Figure 5 shows the dimensionless velocity profiles for three values of @T. The 
curves themselves are universal, but the corresponding values of Me,, marked on the 
diagram for illustrative purposes refer to low-pressure steam flow at 0.5 bar and 
wetness fraction 0.1. It is interesting to note that the velocity profile is not 

g 
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FIQURE 5. Dimensionless velocity profiles in a Type I wave. 

symmetrical about xT = 0 and that, for the upper limiting case #T = 1, a 
discontinuity in the first derivative occurs a t  the leading tip of the wave (vT = 1). 
This latter point will figure in the discussion of Type I1 waves, where it will also 
emerge that values of #T < 1 in (61) have a physical significance. 

A measure of the shock wave thickness is obtained by constructing the tangent to 
the velocity profile a t  vT = 0 as shown in figure 6 (a) .  From (60), (dwT/dxT)* = -MT 
and hence the dimensionless shock wave thickness AxT = 455T. The dimensional 
thickness is therefore given by 

2ae3 7T L 1  - (ae3/ae2)21 AX = 
Me30 - 

In order to provide a physical appreciation of typical shock wave thicknesses, figure 
6(b) presents curves of Ax versus droplet radius for different upstream Mach numbers 
Meso for water droplets in steam a t  0.5 bar pressure and 0.1 wetness fraction. 

7.2. Variation of the thermodynamic properties 
Knowing the velocity distribution, the pressure variation can he found from the 
momentum equation (4). Thus, 

1 dp  -?(a,,+ V i )  dV' - pdx - (l-y)a,2 Ti? (63) 

For fully dispersed waves, Vg 4 ae3, and integration subject to this and other obvious 
assumptions gives 

where p ,  is the pressure a t  the reference state V, = ae3,. To a good approximation the 
pressure is a linear function of the dimensionless velocity perturbation wT. 
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Droplet radius (pm) 
FIQURE 6. (a) Definition of shock wave thickness. (b )  Thickness of Type I shock waves in wet 

steam; p = 0.5 bar, y = 0.1. 

We showed earlier, in connection with (51), that the vapour superheat, -AT, 
attains its maximum value when Vg = 0. From (55), this maximum value is given by 

We have thus arrived at the unexpected conclusion that the maximum superheat in 
a fully dispersed wave is independent of the droplet size distribution and (almost) the 
wetness fraction. The variation of AT through the wave can also be found from (55). 
Thus, 

(67) -- - (1-Vt) .  
AT or, alternatively, 

AT,,, 
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FIQURE 7. Vapour temperature distribution in a Type I wave as a function of velocity. 

The departure from equilibrium in a fully dispersed wave can be surprisingly small. 
For example, for steam a t  0.5 bar pressure and 0.1 wetness fraction, then for values 
of q5T of 3,  2 and 1, -ATmax takes values of 0.5 O C ,  1.1 "C and 4.2 "C respectively. 

It is also interesting to calculate the vapour temperature distribution in the wave. 
The saturation temperature mimics the pressure distribution via the Clausius- 
Clapeyron equation and therefore increases monotonically through the wave, 

where T,, is the saturation temperature a t  pressure p,. If Ts0 is the upstream 
saturation temperature, then the increase in T, through the wave is 2~Ts0-Ts,~. We 
now define a dimensionless vapour phase temperature by 

Tg-T,, Tg-T, T,-Ts. + - 
lTso-Ts*l - ITso-Ts*l ITso-Ts*I. 

Substituting from (64),  (66) and (68), we obtain 

Thus, for a given upstream Mach number and type of fluid, the vapour temperature 
distribution is a function only of vT and is independent of the droplet size 
distribution. We see quite clearly now that the only way rT influences the wave 
profile for any of the thermodynamic properties is through the scaling in the x- 
direction. Thus, depending on the value of rT, the wave spreads out in the x-direction 
in such a way that, for each value vT, the same values of p ,  AT and Tg result. 

Figure 7 shows the vapour temperature distribution as a function of vT for various 
values &. These curves are not universal and do depend on the type of fluid and the 
upstream conditions as shown by (70). As before, we use as an illustrative example 
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FIQURE 8. Vapour temperature distribution in a Type I wave aa a function of distance, for 
steam at p = 0.5 bar, y = 0.1. 

steam at 0.5 bar pressure and wetness fraction 0.1. The same curves plotted as 
functions of non-dimensionalized distance xT are shown in figure 8. (It is interesting 
to compare the variation of thermodynamic and fluid properties through the wave 
(especially the temperature distribution) with similar calculations for other types of 
relaxing gas flows. In this respect the article by Becker & Bohme (1969) is 
particularly relevant.) 

It is interesting to note that the vapour temperature rises above the downstream 
saturation temperature at some point in the wave if the far downstream velocity falls 
below a certain value. To see this, we solve (45)-(47) for DT,/T, to give 

where 

Hence, for a superheated vapour AT < 0, DT, > 0 for aT < V, < a,,, and DT, < 0 for 
V, < aT. Evidently the velocity aT plays the same role as the isothermal speed of 
sound in single-phase flow. 

From the symmetry of the wave about vg = ae3., we can estimate the upstream 
Mach number corresponding to a far downstream velocity of uT. This is given by 

Me30 = 1 + (1 -aT/ue3) = 2-aT/ae3. (73) 
For the sample calculation, vapour temperature overshoot should occur for 

> 1.027 and this agrees with the curves in figures 7 and 8. 

7.3. Comparison with numerical calculations 
In  order to assess the accuracy of the analytical development presented in the 
previous sections, a computer program was written to integrate the equations of 
motion step-by-step through the wave. In the interests of accuracy, the basic 
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FIGURE 9. Velocity distribution in a Type I wave: comparison between theory and numerical 
calculation, $T = 3. 

equations (29)-(34) were employed in the code, the one simplification being that 
droplet temperature equilibration was assumed a t  all times. (For all the calculations 
presented here, droplet temperature relaxation was very fast, of the order of 0.01 ps.) 
Details of the numerical procedure can be found in Appendix B. 

Figure 9 shows a comparison between the analytical and the numerical solutions 
for a typical type I wave. Not only does the analytical solution model the qualitative 
physical structure of the wave, but it also performs well on a quantitative basis. 

7.4. Velocity slip in Type I waves 
We are now in a position to  assess the validity of our initial assumption of 
instantaneous velocity slip equilibration throughout Type I waves. The mathematical 
representation of this assumption is given by (44b). Non-dimensionalizing (by using 
(57)-( 60)) and neglecting squares of small quantities, gives 

where Avi = A&/Vi0 and A 5  is the i-group slip velocity. 
Equation (74) gives the variation of velocity slip assuming instantaneous 

equilibration and neglecting any transient accommodation. A study of the velocity 
profiles in figure 5 suggests that the validity of this assumption might deteriorate as 
$T approached unity, especially near the wave tip (vT = 1) where the velocity 
gradient is particularly high. 

This possibility can be investigated by rederiving (51), but this time starting from 
(35)-(37) and including the slip velocity terms explicitly. Doing this, we obtain 

Using the same integration technique as for (52) results in 
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A comparison of (55) and (76) shows that a necessary condition for the assumption 
of velocity slip equilibration to be valid is 

Substituting from (59), (66) and (74), this condition can be rewritten, as 

fi< 1, (78) 
g5T 1 

g5T -vT 1 - ‘T 

where 

(78) becomes 

= y i ~ r i / y  is a weighted average of 71t. For monodispersed droplets, 
= O(y) and typically we might expect ae3/ae2 x 0.95. Thus, the condition 

As the analysis is restricted to low wetness fractions (y < 0.2), this inequality 
is well satisfied for most Type I waves. Remembering that 1 < g5T < 00 and 
- 1 < vT < + 1, it can be seen that significant errors only occur as g5T approaches 
unity and even then, only in the region close to vT = 1. 

We have therefore reached the important conclusion that departures from velocity 
slip equilibrium are only significant in Type I waves near the leading tip of the wave 
as the upstream Mach number approaches the upper limiting value Me,, = 1. 

8. Fully dispersed waves of Type I1 
In analysing Type I waves, we assumed that droplet temperatures and velocity 

slip were at equilibrium and the transient time required to attain these conditions 
was negligibly small. Maintaining those constraints, we then showed that a fully 
dispersed wave could only exist for MezO < 1, and for Me,, > 1 a discontinuity would 
appear in the flow as shown in figure 10. 

We also showed that, as Me,, + 1 from below, departures from velocity slip 
equilibrium becomes significant near the leading tip of the wave. In practice, when 
Me,, > 1, the discontinuity is smoothed out by the dominating effect of velocity slip 
and a stable, fully dispersed wave can occur. The front part of the wave is steep and 
is governed by velocity relaxation. The tail of the wave extends over a much longer 
distance and its structure is governed (just as in a Type I wave) by thermal 
relaxation. Connecting the two regions is a transition section where the effects of 
velocity slip and thermal relaxation are of comparable magnitude (see figure 10). 

The mathematical analysis of Type I1 waves is much more difficult than that of 
Type I. However, the forward and rearward parts of the wave both respond to simple 
techniques if suitable approximations are made. 

In the tail of the wave, velocity slip equilibration is assumed and the governing 
equations (45)-(47) are identical to those for a Type I wave. Non-dimensionalizing 
exactly as before gives the same differential equation (56) for the velocity 
distribution. On integration we obtain (61), the only difference being that now 
g5T < 1 because Me,, > 1.  

Figure 11 shows a plot of (61) for an arbitrary value of g5T = 0.69. The lower branch 
of the curve tends to the correct downstream boundary condition (Vg+-Go as 
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FIGURE 10. Schematic diagram of the velocity distribution in Type I1 waves. 
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FIGURE 11. Structure of a Type I1 wave assuming equilibrium of droplet temperature and 
velocity throughout. 9, = 0.69, Meso = 1.036. 

x-, co), but the upper branch of the curve is obviously non-physical. Were we to 
continue to ignore the effects of velocity slip, we would replace the upper branch by 
the discontinuity shown in figure 10. Indeed, in many applications of condensing 
flows such an approximation would be quite acceptable. It is easy to locate the 
position of the discontinuity by using Prandtl's relation, V,, V,, = aE2, subscripts 1 
and 2 referring to the upstream and downstream conditions respectively as shown in 
figure 11. 

We now investigate the process by which the effects of velocity slip smooth out the 
discontinuity at the front of the wave. In this very steep part of the velocity profile, 
we assume droplet temperature equilibration (7D6 -, 0, A ~ / T D ~  -+ V, DT,) and frozen 
heat transfer (7T-+ XI). The former assumption is excellent, but the latter requires 
qualification. It is certainly not acceptable in the transition section of the wave but, 
unless the upstream Mach number Me,, is only just above unity, heat transfer plays 
only a minor role in modifying the velocity profile in the forward part of the wave. 

Making these approximations results in a set of interphase transfer equations 
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represented by (29), (38) and (44a). Substituting in the conservation equations 

(80) 
(35)-(37) then gives Dp DT DV c,T DT 

--A+A+-L-T!- - 0, 
P Tg v, 1 - Y  hf, T, 

Manipulating algebraically in much the same way as for Type I waves gives 

where a,, is defined by (40). 
Equations (83) and (84) bear a close resemblance to (50) and (51). For an initially 

equilibrium flow, the vapour lags the droplets as the flow decelerates through 
the wave and A& < 0 for all droplet groups. Equation (83) then shows that for 
DV, < 0 and A& < 0, it  is necessary that V, < a,, for a continuous solution to 
exist. The reference velocity a,, therefore takes on the characteristic of a frozen speed 
of sound for Type I1 waves. 

In considering (84), we note that the yr are almost constant in the forward part of 
the wave (as negligible evaporation occurs here) and define an average slip velocity 

(85) AV by 

It then follows that when V, > a,,, D(AV) < 0 and [ A l l  increases, and when V, < a,,, 
D(AV) > 0 and IAV decreases. The maximum value of IAU therefore occurs at  

yAV = z yi A&. 

v, = a,,. 
Eliminating DV,/V, from (83) and (84), we obtain 

where Me, = Vg/ael is a vapour phase Mach number based on the sound speed a,,. 
Given that all the A K  are negative, we deduce 

(a )  For V, < ae2 or V, > a,,, D(AV) > 0 and lAVl decreases. The tendency for a flow 
disturbed from equilibrium is to return to the same equilibrium state. 

( b )  For a,, < V, < a,,, D(AV) < 0 and lAU increases. In this regime departures 
from equilibrium tend to grow and it is this characteristic which allows Type I1 fully 
dispersed waves to exist stably in steady flow. 

Equation (86) can be integrated using the same technique as for Type I waves. 
This time, however, we take the velocity ae2* as datum and define the vapour phase 
velocity perturbation Vg by, 

Approximate integration then gives 
V, = a,,*+ v;. (87) 

where any variation of a,, through the wave has been neglected. 
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FIGURE 12. Velocity profile for a fully dispersed Type I1 wave. 

It is difficult to proceed further with a general analysis involving a polydispersed 
droplet population as an average value of 71i which is independent, of the A 4  cannot 
be defined. (The problem did not arise with Type I waves because AT was common 
to all droplet groups). In order to make progress, therefore, we assume the droplet 
population to be monodispersed and introduce the following dimensionless variables : 

The analysis parallels exactly that for Type I waves and leads to a solution for the 
velocity profile given by 

(1 - wv)(#v-l) 
x, = ln{ (1 + ?Iy)(@v+l) }+const. 

Note that q5v+ 00 corresponds to Vg,+ae, (Me,, + 1, the lower limit for a Type I1 
wave) and q& = 1 corresponds to V,, = a,, (M,,, = 1, the upper limit for a Type I1 
wave). 

Figure 12 shows (61) and (92) plotted on the same scale for a value of 4, = 1.5 
(which corresponds to the q5T = 0.69 of figure 11). The arbitrary constants in the 
equations have been adjusted empirically to show how the two solutions blend 
together in the transition section of the wave. Also shown in figure 12 are the results 
of a numerical integration for the same upstream conditions. The agreement between 
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FIGURE 13. Velocity slip in a fully dispersed Type I1 wave. 

the numerical and analytical solutions is generally good. The behaviour in the 
transition section of the wave is shown more clearly in figure 13 which is a graph of 
dimensionless velocity slip AV/Vioa plotted as a function of vT. In  the forward part of 
the wave, the numerical solution is well approximated by (88) and in the rearward 
part it tends to (74) which assumes velocity slip equilibration. 

9. Fully dispersed waves of Type 111 
When the upstream vapour velocity is in the range ae10 < V,, < a,,, a continuous 

solution of the equations of motion is impossible without relaxing the constraint on 
the droplet temperature. However, if this is done, a fully dispersed wave can exist, 
the leading tip of the wave being dominated by the effects of droplet temperature 
relaxation. 

In practice, the difference between a,, and a, is always very small and so Type I11 
waves are not of practical importance. In any case, the leading part of the wave is 
very steep indeed as the relaxation times T~~ are very short, and under certain 
circumstances the thickness may even approach a value where the neglect of 
viscosity and thermal conductivity is not a good approximation. 

Although it is possible to develop the equations of motion in a similar fashion as 
for the Type I1 wave analysis, we shall not do so here and be content to leave Type 
I11 waves as interesting curiosities of little practical significance. 

10. The limiting case, y + 0 
In the analysis so far, we have assumed that the relative change in wetness fraction 

across a wave is comparatively small and that the relaxation times remain 
approximately constant. If the upstream wetness fraction yo is small, however, 
complete evaporation may occur in the wave and the flow behaviour changes. 

Equations (40) and (41) show that, as y+O, both a,, and a,, tend to the frozen 
speed of sound a,, but aea tends to a value given by (43) which is significantly below 
a,. In this limiting case, the range of velocities available for Type I1 and Type I11 
waves become negligibly small and it is only necessary to discuss the behaviour of 
Type I waves. 
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Consider first the velocity profile for the Type I wave labelled (a)  in figure 14. This 
profile, which was computed numerically, corresponds to a monodispersed wet steam 
flow a t  a pressure of 0.5 bar, a wetness fraction of 0.1 and an arbitrary droplet radius 
of 0.1 pm. The changes in wetness fraction and thermal relaxation time across the 
wave are small and, in terms of the velocity change, the wave is almost centred on 
ae3. Waves like this can be modelled very successfully by the analytical method 
developed in previous sections. 

As yo tends to zero, all other parameters remaining constant, (24) shows that 7T 
increases without limit. Under these circumstances it is not a good approximation to 
assume rT constant through the wave and i t  is necessary to resort to a computational 
method to obtain a quantitative solution to the equations of motion. 

Curve ( b )  in figure 14 shows a case where yo = 0.01 and complete evaporation 
occurs in the wave. As T ~ +  03, (50) and (52) show that both DV,+ 0 and D(AT) + O .  
Thus, when the droplets finally disappear, no further changes in velocity and 
temperature occur and, in fact, all the flow parameters remain constant at their local 
values. When this happens the far downstream velocity may well exceed the 
equilibrium sound speed ae3, showing that a stationary wave can exist in a flow with 
both upstream and downstream velocities greater than ue3. This is less surprising, 
however, when it  is appreciated that the upstream flow is two-phase and is 
supersonic with respect to  ae3, while the downstream flow is single-phase and is 
subsonic with respect to a,. 

As yo is reduced further (curve c in figure 14), the wave gets progressively weaker 
and disappears altogether as yo + 0. This type of flow behaviour and wave structure is 
reproduced for any upstream velocity in the range ae30 < V,, < a,.,,. 

We are now in a position to deduce how the velocity of a small-amplitude plane 
wave propagating into a stationary vapour-droplet mixture varies as the wetness 
fraction of the mixture tends to  zero. We assume that, however, i t  was generated, the 
compressional pulse has travelled a sufficient distance to  have relaxed to its 
equilibrium velocity so that the flow is steady with respect to the wave. 

Making the Type I wave approximations, we eliminatc DVJF‘, and DTJT, from 
(35)-(37). Then, assuming yo is small, we integrate across the wave to give 

where Ap and Ay are the (small) changes in pressure and wetness fraction across the 
wave and V, is the wave speed with respect to the stationary two-phase mixture. 

Equation (93) is valid for all types of steady plane waves of small amplitude. I n  
the limit when the flow is single phase, Ay = 0 and V, = a, for all wave strengths 
A p l p .  When the flow is two-phase and in thermodynamic equilibrium on both sides 
of the wave the change in wetness fraction Aye is directly related to the pressure 
change Ap. This relationship, obtained simply from Ah = Ap/p and the Clausius- 
Clapeyron equation, is given by 

Combining (93) and (94) gives 

(1 - 3) = 0, (95) 

with ue3 given by (43). Thus V, = ue3 for all values of Ap/p 
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FIGURE 14. The behaviour of fully dispersed waves as yo + O .  Steam of p = 0.5 bar, ro = 0.1 pm. 
(All solutions generated numerically.) 
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FIGURE 15. (a) Velocity of small-amplitude plane waves m yo-fO. ( b )  Limiting wetness fraction 
for complete evaporation as a function of wave strength. Steam at 0.5 bar. 
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When complete evaporation occurs within the wave, Ap and A!/ are independent 
variables (Ay is now equal to  the upstream wetness fraction of the mixture) and (93) 
can then be solved for the wave speed V,. For fixed wave strength Ap/p, V, increases 
continuously from ae3 to a, as Ay+O. This behaviour can be clearly seen by 
eliminating A p l p  between (93) and (94) and solving for V, to give, 

which is valid for 0 < IAyI < [Aye[. 
Figure 15 shows how the speed of an equilibrium small-amplitude wave in steam 

at  a pressure of 0.5 bar varies as the wetness fraction tends to zero. Although the 
transition from ae3 to a, is continuous, the wetness fraction is necessarily extremely 
small for all practical acoustic values of A p l p  before any significant deviation from 
the equilibrium value ue3 is observed. Experimentally, the transition would appear 
discontinuous for all practical methods of measurement. 

11. Partly dispersed shock waves 
For V,, > a,, no continuous solution of the conservation equations is possible and 

the dispersed part of the wave is preceded by a near discontinuity dominated by 
viscosity and thermal conductivity as shown in figure 3. 

The usual model of a partly dispersed shock wave assumes that the interphase 
transfer processes are frozen during the passage through the discontinuity and the 
vapour properties just downstream of the discontinuity can be calculated using a 
standard Rankine-Hugoniot analysis. The liquid droplets therefore pass through the 
shock without change in radius, temperature and velocity. A comparison of the 
relaxation times 7Di, 7Ti and 7Ti with the usual estimates of shock wave thickness (a 
few vapour mean free paths) shows this assumption to be quite acceptable, with the 
possible exception of droplet temperature relaxation. 

The conditions downstream of the discontinuity provide the initial values for 
integrating the conservation equations through the relaxation zones. The droplet 
temperature relaxes very quickly, followed by velocity slip and finally the vapour 
temperature. The lengths of the relaxation zones are in the approximate ratios 
7,, : 7I : 7T. Marble (1969) deduced incorrectly that the velocity and thermal relaxation 
zones were of the same magnitude, but (26) show that 71/7T = O(y). 

For even moderate discontinuities, the values of AT,/Ts, AT/T, and (especially) 
AV,/V, at  the start of the relaxation zone are large and good accuracy can only be 
obtained if the calculations are performed numerically. As with other types of 
relaxing gas flow, a linearized solution for the relaxation zone is possible but this 
performs badly in comparison with the numerical calculations. When the shock is 
substantial, the magnitude of the aforementioned non-equilibrium variables is such 
that second-order effects involving etc. dominate the initial stage of 
relaxation and, when the shock is weak, the change of sign of the term (1 -We,) in 
(52) within the relaxation zone precludes the use of linearized theory. 

The results of a typical numerical calculation for low-pressure steam are shown in 
figure 16. Upstream of the discontinuity, the flow is in equilibrium a t  a pressure of 
0.5 bar and a wetness fraction of 0.1. The frozen Mach number M,, is 1.5 and the 
droplets are monodispersed with radius 0.1 pm. The numerical results show that, 
downstream of the discontinuity, the droplet temperature relaxes very quickly as 
expected. The velocity slip, which is initially very large, then also relaxes and is 
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FIGURE 16. Structure of the relaxation zone for a typical partly dispersed shock wave in wet 
steam at upstream conditions p = 0.35 bar, T = 345.9 K,  r = 0.1 km, y = 0.1, Mf = 1.5. 
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FIGURE 17. Dimensionless thickness of partly dispersed shock wave in wet steam. 

Steam at 0.5 bar, ro = 0.1-1.0 pm, yo = 0.05-0.1. 

finally followed by the vapour superheat. The initial increase in vapour temperature 
just after the discontinuity is due to the effect of velocity slip. 

A dimensionless shock wave thickness AX, can be defined by 

(" ATdx 
J o  Ax, = 

'T vgd ' 
(97) 

where ATo is the vapour superheat and vgd is the velocity just downstream of the 
discontinuity. Figure 17 is a graph of AXs as function of upstream Mach number M ,  
for a wide range of conditions for low-pressure steam-water droplet mixtures. Were 
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the superheat to decay exponentially in the relaxation zone as suggested by 
linearized theory, then AXs would equal unity. 

12. Conclusions 
In this paper we have discussed the structure of stationary waves in steady, one- 

dimensional, vapour-droplet flows and have particularly concentrated on fully 
dispersed waves, which have not been addressed previously in the literature. The 
roles of the three relaxation processes in determining the structure of these waves 
have been clarified and an analytical method of solution has been presented, the 
results of which are comparable with those of accurate numerical calculations. The 
analysis predicts correctly the variation through the wave of the flow and 
thermodynamic properties, some of which, such as the vapour temperature, 
superheat and velocity slip, behave in initially surprising ways. The analysis also 
demonstrates the correct scaling parameters for such flows and clearly shows the 
effects in transonic flow situations of the common assumption of neglecting droplet 
temperature relaxation and velocity slip. The structure of partly dispersed shock 
waves, which is more straightforward, has also been briefly discussed and it has been 
noted that a linearized analysis for the relaxation zone does not, in general, give good 
results. 

The derivation of the fundamental equations and much of the subsequent 
analytical development is valid for a polydispersed droplet population. In particular, 
we have described a method by which the effects of vapour thermal relaxation of an 
arbitrary liquid phase polydispersion may be elegantly incorporated into the 
analysis. Analytical difficulties still remain, however, if it is desired to include the 
effects of velocity slip with a wide range of droplet sizes present and such calculations 
are best performed numerically. 

The wave behaviour in a two-phase flow as the wetness fraction tends to zero has 
been analysed and it has been shown that the notion of discontinuous behaviour at the 
saturation line, sometimes suggested in the literature, is fallacial. A continuous 
transition exists between the two limiting cases, aes and a,. 

This work was carried out at the Whittle Laboratory, University of Cambridge 
and A. Guha was supported by a Nehru Scholarship. 

Appendix A. Thermal relaxation processes 

Clausius-Clapeyron equation (9) results in 
Straightforward linearization of (17) in conjunction with (15), (18) and the 

where a, = 1/( 1 +4.5Kni/Pr). 

left-hand side of (12) to zero and introducing (16) and (A 1). The result is 
The steady-state value of the droplet temperature T,, is defined by setting the 

where 
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For most substances, irrespective of the Knudsen number and hence the value of at, 
the magnitude of (T,, -T,) is a very small fraction of the vapour subcooling (T,- F,). 
(For example, for low-pressure steam with q = 1 and ai = 0, A x 0.025 and hence 
ITrn - T,I < 0.025 IT, - Tgl.) Thus, the steady-state droplet temperature T,, is always 
approximately equal to the saturation temperature (the possible exception being if 
q 6 1). 

By substituting (16) and (A 1 )  in (12) and then eliminating (T,,-Ts) using 
equation (A 2), we obtain 

0, (A 4) -+- dT, Ti-%= 
dx K T D i  

where rDi is given by (22). Equation (A 4) is a relaxation equation in standard form 
for the i-group droplet temperature and rDi is the corresponding relaxation time. 

In order to deduce an expression for the vapour thermal relaxation time, we 
imagine a departure from equilibrium solely of the vapour temperature T,, the 
droplet temperatures remaining at  the saturation value and the slip velocities being 
zero. Manipulation of the conservation equations (3)-(6) for the condition of zero 
velocity slip gives the thermodynamic relation 

Expansion of the left-hand side of (A 5 )  and introduction of (A l),  ( l l) ,  (12) and (16) 
results in, 

where -=x---, 1 1 
TT rTi 

rTt being given by (24). AT = (T,- T,) is the vapour subcooling and is the non- 
equilibrium variable for this relaxation process and rT is the conjugate relaxation 
time. More details of the derivation of ( A 6 )  and a discussion of the physical 
implications can be found in Young (1984). 

Appendix B. Numerical solution procedure 
Using (3), the conservation of droplet number, and (7) and (8), the equations of 

state for the vapour phase, the continuity, momentum and energy equations (4)-(6) 
may be recast as a set of three simultaneous equations for dV,/dx, dT,/dx and dpldx. 
Equations (3) and (29)-(31) furnish expressions for d&/ds, dni/dx, dT,/dx and 
dmi/dx, a set of four such equations being obtained for each droplet group i. The 
resulting set of (3 + 4N) simultaneous first-order differential equations (N being the 
number of droplet groups) can then be integrated numerically using a fourth-order 
Runge-Kutta procedure. 

A computational procedure that marches forward in space must necessarily start 
from an initial condition that represents a deviation from equilibrium. For a partly 
dispersed shock wave, the difference in the vapour and liquid-phase flow variables 
just downstream of the frozen shock discontinuity constitute the required initial 
departure from equilibrium. For a fully dispersed shock wave an initial, arbitrary 
perturbation of the flow must be specified. Step-by-step integration of the 
conservation equations then automatically generates the wave profile. Providing the 
initial perturbation is sufficiently small, the numerical results closely approach the 
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exact solution. Thus, if two calculations are performed for the same upstream flow 
conditions but with different initial small perturbations, it is possible to superpose 
the results by a relative shift in the x-direction. 
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